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ABSTRACT 

Every mine countermeasures (MCM) operation is a balance of time versus risk.  In 

attempting to reduce time and risk, it is in the interest of the MCM community to use 

unmanned, stationary sensors to detect and monitor drifting mines through harbor inlets 

and straits.  A network of stationary sensors positioned along an area of interest could be 

critical in such a process by removing the MCM warfighter from a threat area and 

reducing the time required to detect a moving target.    

Although many studies have been conducted to optimize sensors and sensor 

networks for moving target detection, few of them considered the effects of the 

environment.  In a drifting mine scenario, an oceanographic drift model could offer an 

estimation of surrounding environmental effects and therefore provide time critical 

estimations of target movement.  These approximations can be used to further optimize 

sensor network components and locations through a defined methodology using 

estimated detection probabilities.  The goal of this research is to provide such a 

methodology by modeling idealized stationary sensors and surface drift for the Hampton 

Roads Inlet. 
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I. INTRODUCTION  

A. MINE WARFARE OVERVIEW 

Mine warfare is defined as the strategic and tactical employment and countering 

of sea mines.  The employment of sea mines, or “mining,” is primarily used to gain sea 

control.  This can be done by laying mines using ships, aircraft, or submarines, or simply 

by the threat to do so.  Mining can be offensive in nature for the purposes of denying 

enemy forces access to a strategic location, in which case, it is referred to as “offensive 

denial.”   Mining can also be used to protect territorial and international waters against 

enemy invasion and this is known as “defensive protection.”  Actions taken to counter 

mines laid for either offensive or defensive purposes are known as “mine 

countermeasures.”  Mine countermeasures include any actions actively or passively 

employed to deter a mine’s ability to damage or sink an allied or neutral vessel.  As will 

be discussed, it is essential to have knowledge of both mining and mine countermeasures 

to fully understand the complexity of mine warfare of the past, present, and future.   

1. Mine Threat 

Whether mining or conducting mine countermeasures, mines are classified by the 

same three categories: position in the water column, the method by which they are 

delivered to the battlespace, and their activation mechanism.  The first category, position 

in the water column, is divided into three subcategories: bottom, moored, and drifting.  

Mines can be placed almost anywhere in the water column from 0 to 500 m.  Bottom 

mines are generally placed in shallow water to target ships and submarines.  Moored 

mines, also known as tethered or buoyant mines, are also used to target ships and 

submarines but can be placed at virtually any depth in the water column.  Lastly, drifting, 

or floating, mines usually move with ocean currents and are built to float at or near the 

sea surface.  Due to the indiscriminate nature of the drifting mine, it was banned by the 

Hague Convention in 1907 but it is still used by many rogue nations.  One or all three of 

these water column positions can be used to make an effective minefield (National 

Research Council, 2000). 
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The second category by which mines are classified, method of delivery, can also 

be divided into three subcategories: aircraft, surface, and submarine.  Mines are generally 

dropped by aircraft in offensive actions where delivery time is limited.  These mines are 

generally subject to the greatest amount of impact burial, depending on the ocean floor 

composition and the height from which they were dropped; this may make them more 

difficult to detect than mines deployed by surface or submarine assets.  Mines can also be 

laid by a variety of ships and boats, some of which are disguised as tankers or other 

merchant vessels allowing for mines to be laid in secret.  Mines laid by submarines are 

designed to be fired out of torpedo tubes and therefore will often have the shape of 

torpedoes.  Each method of delivery offers advantages and disadvantages to the mine 

layer depending on the weighing factors of time, risk to mining assets, and necessity for 

covert operations. 

The third category by which mines are classified is arguably the most important to 

mining and mine countermeasures operations: the actuation mechanism.  There are three 

subcategories of actuation mechanisms: contact, influence, or controlled.  Contact mines 

are the oldest type of mines and they require physical contact with the hull of a vessel to 

detonate.  They are typically designed with chemical horns that protrude from the top of 

the mine so as to cause detonation upon contact.  Influence mines are the most common 

and have detectors to sense variations in pressure or acoustic, magnetic, and electrical 

fields.  They can be built to sense different types of vessels, have time delays before 

detonating, or both.  Controlled mines are usually fired from shore sites using hidden 

lines or cables.  They are typically used as a defensive tactic and are most effective in 

preventing passage into confined areas.  Given that mines can be classified by three 

different mine categories, their respective subcategories, and various combinations 

thereof, the design possibilities for a minefield can easily range from straight-forward to 

extremely complex (National Research Council, 2000). 

2. Mine Countermeasures 

Mine countermeasures can be classified as passive or active.  Passive mine 

countermeasures usually involve reducing the signature of a vessel in an effort to avoid 
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detonating a mine.  Passive mine countermeasures may involve one or a combination of 

the following: mine watching, mine avoidance, deperming, degaussing, noise reduction, 

and ship-protection devices such as mine-catching nets attached to vessels used in the 

Civil War.  Deperming is the process of demagnetizing a ship’s hull by electrical current 

which, through periodic application, reduces the ship’s magnetic signature.  Degaussing 

involves installing a permanent coil system onboard to neutralize the ship’s magnetic 

signature.  Noise reduction is a technique used to avoid acoustic actuating mines and it 

includes, but is not limited to, installing features and procedures during shipbuilding that 

reduce noise.  Although all of these passive techniques act to reduce effective risk to 

transiting vessels, they are defensive in nature and therefore do not act to diminish or 

eliminate the presence of a minefield (Melia, 1991). 

Active mine countermeasures, on the other hand, are offensive in nature and 

involve locating and neutralizing mines or mine-like contacts.  Active mine 

countermeasures include sweeping, hunting, and neutralization.  All three forms of active 

mine countermeasures require a thorough examination of time to render the minefield 

passable versus risk to allied assets.  The general guideline is “hunt when you can, sweep 

when you must” and neutralize whenever possible.   

Minesweeping, which is typically used when time is the most important 

operational factor, can use both mechanical and influence methods to combat a minefield.  

Mechanical minesweeping is the process of physically cutting moored mine cables to 

enable mines to float to the surface and become more visible for rapid disposal.  This can 

be accomplished with various modifications of floating ‘otters’ and cutters towed behind 

a mine countermeasures ship or helicopter.  Influence sweeping uses acoustic, magnetic, 

and pressure signals generated from a towed body to detonate mines with actuating 

mechanisms susceptible to the emitted signals.  In order to maximize sweeping 

effectiveness, both types of minesweeping require timely intelligence of the minefield 

dimensions, types of mine actuating systems involved, and current environmental 

conditions.   

Minehunting is literally the search for mines using optical and acoustic means.  

This can be accomplished in many ways but it is typically done using side-scan sonar, 
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hull-mounted sonar, underwater cameras, or simply the naked eye.  Minehunting is 

particularly necessary when there is no intelligence available about the types of mines 

that have been laid because minesweeping requires this information to be most effective.  

Furthermore, minehunting is often considered the safest way of dealing with mines; it is 

not used to intentionally actuate the mine while assets are in the water and it does not cut 

moored cables, allowing an active contact mine to drift freely through the water (National 

Research Council, 2000).   

The last of the active mine countermeasures is neutralization.  Neutralization 

refers to the disposal of mines after or during the time they are located.  It can be 

accomplished using several methods including gunfire and sympathetic explosions, but 

the most common methods require divers, Marine Mammal Systems, or remotely 

operated vehicles.  These three assets can be used to identify and attach an explosive 

charge to a bottom, moored, or drifting mine which is inherently a high risk activity.  

This process, although high risk, is almost always essential to render a minefield 

passable; hunting does not remove mines from the water and mechanical sweeping may 

cause active moored mines to rise and drift on or near the surface. 

To accomplish active mine countermeasures, the United States employs what is 

known as the Mine Countermeasures (MCM) Triad.  The MCM Triad includes three 

branches: air mine countermeasures (AMCM), surface mine countermeasures (SMCM), 

and underwater mine countermeasures (UMCM).  The primary U.S. AMCM asset is the 

MH-53E Sea Dragon helicopter.  It can be configured for mechanical or influence 

sweeping or minehunting.  The U.S. SMCM asset is the Avenger (MCM-1) class 

minesweeper and it is equipped to conduct mechanical and influence sweeping, 

minehunting, and mine neutralization.  For the purpose of avoiding influence mine 

detonation, the Avenger class minesweeper is outfitted with several types of passive mine 

countermeasures including a wood hull covered in fiberglass to reduce acoustic and 

magnetic signatures.  Lastly, the U.S. UMCM branch is comprised of Explosive 

Ordnance Disposal (EOD) divers, Unmanned Undersea Vehicles (UUVs), and Marine 

Mammal Systems (MMS).  UMCM brings a unique capability to MCM efforts because 

they are primarily designated as identification and neutralization assets; they are able to 
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identify and neutralize mines as the AMCM and SMCM assets continue to hunt and 

sweep.  The goal of the MCM Triad is to work seamlessly to actively reduce the mine 

threat while maintaining an acceptable timeline and risk level (National Research 

Council, 2000). 

B. IMPORTANCE OF CONTINUOUSLY UPDATING METHODS OF MINE 
COUNTERMEASURES 

Mine countermeasures is one of the most necessary aspects of naval combat.  It is 

necessary in the sense that the potential for sea mines has, can, and will continue to 

threaten freedom of movement throughout the world’s oceans as long as the mine 

continues to be one of the most cost-effective and clandestine weapons in naval arsenals 

(National Research Council, 2000).  The need for mine countermeasures is particularly 

necessary when conducting naval operations in and near constricted waterways and 

littoral combat zones where mines are generally most effective.  Transporting necessary 

supplies or conducting offensive maneuvers in these areas require unobstructed sea lanes 

for strategic, operational, and tactical mobility (National Research Council, 2000).  These 

operations can be stalled or even aborted due to the simple threat of a minefield.  

Moreover, the inexpensive nature of mines allows countries with a mining capability, 

particularly countries of limited military means, the potential to bring a large, more 

capable navy to a standstill.  Therefore, mining is a powerful weapon for defensive and 

offensive actions and mine countermeasures is a necessary combat skill.   

1. Historical Examples of Repercussions Associated with Advanced 
Mining and Obsolete Countermeasures 

The importance of mine warfare, particularly mine countermeasures, has been 

learned and relearned throughout U.S. history.  Since the first successful sea mine, built 

by David Bushnell in 1776 “the history of MCM has been a history of progress, decline, 

and resurgence” (Melia, 1991).  This cyclical process is caused by the lag of mine 

countermeasures behind the constantly growing number and evolving complexities of 

underwater mines.  The simple statistical growth in the number of mine-producing 

countries should be enough to warrant world-wide concern; there has been a 75% 
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increase from 1988 to 2000.  By the year 2000, more than 50 countries had mining 

capabilities with over 300 mine types to use (National Research Council, 2000).  

However, mine countermeasures continue to lag as the current surface MCM assets in use 

by the United States were acquired almost three decades ago and there is still no 

dedicated pipeline for mine warfare officers within the U.S. Navy.  This disparity is 

shown throughout history and only truly comes to light when there is a known minefield 

or catastrophic mine strike invoking the hasty development of a series of “quick-fix” 

solutions (Melia, 1991).  Given the scope of this thesis, only a few historical examples of 

this disparity will be discussed but there are many more that also emphasize the necessity 

for mine countermeasures technological developments.  Examining these and other 

historical examples is one of the best ways to describe the importance of mine warfare 

and what needs to be done in the United States to avoid repeating history.  

a. Civil War 

A notable example of the importance of mine warfare and how mine 

countermeasures has been known to lag behind mining technology is the Civil War.  As 

the Confederacy did not have a substantial navy at the time of the war, it turned to 

funding mine warfare as a way to combat the more traditional naval tactics of the Union.  

In fact, it funded a specialized Torpedo Bureau in October 1862.  Conversely, the Union 

left mine countermeasures to the individual captain of each ship; if any devices were 

used, they were designed and applied at the captain’s discretion.  However, by the end of 

the war, fifty ships, four-fifths of which were Union vessels, were crippled or sunk by sea 

mines (Melia, 1991).   

This is not to say that the Union as a whole failed to conduct mine 

countermeasures.  While many Union officers simply avoided mined waters unless given 

a direct order, there were some that understood the mine threat and the processes required 

to gain a tactical advantage.  One of the most memorable statements in naval history was 

given by Rear Admiral David Glasgow Farragut in 1864: “Damn the torpedoes!  Full 

speed ahead, Drayton” (Melia, 1991).  Using “torpedoes” as another word for mines, 

Farragut did not simply ignore the mines at Mobile Bay and charge into enemy waters; he 
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ordered several minehunting missions prior to his advance.  Farragut sent his flag 

lieutenant and personal friend, Lieutenant John Crittenden Watson, and a special boat 

crew to search for the Confederate laid mines between Forts Morgan and Gaines.  During 

this reconnaissance, Watson and his crew found that many of the mines were inactive due 

to long immersion.  Watson’s crew also worked to sink or disable the remaining active 

mines or mark their location for avoidance purposes.  In light of this, Farragut was able to 

order his fleet to remain ‘eastward of the easternmost buoy’ and took the lead through the 

Bay entrance.  However successful or unsuccessful Union mine countermeasures, the 

high-echelons of the Navy did not disseminate mine warfare lessons learned or establish 

an operational minesweeping department and thus the burden of mine countermeasures 

continued to reside on the shoulders of the individual naval officer (Melia, 1991).   

b. Hague Conference of 1907 

The Hague Conference convened in 1907 after mining events during the 

Russo-Japanese War caused international concern.  Live contact mines that had broken 

free of their mooring cables threatened the Western Pacific, neutral and warships alike.  

Therefore, the conference convened to establish international guidelines for mining to 

include: the automatic sterilization of moored mines if separated from their cables, the 

responsibility of mining nations to clear the mines they laid in international waters 

following wartime hostilities, the use of drifting mines only if they self-sterilized in one 

hour or less, and the banning of unlimited minelaying.  Given these restrictions, many 

nations chose to forgo their mine warfare research and focus on other areas of warfare 

(Melia, 1991).  

c. World War I  

The lack of continuous mine warfare research in the United States from 

1907 until the start of WWI became evident as the Navy raced to prepare its fleet for a 

growing mine warfare problem.  The U.S. Navy did not develop its first mine sweeping 

fleet organization, the Atlantic Fleet Mining and Mine Sweeping Division, until 1915, 

approximately only two years before the United States entered the war (Melia, 1991).  

Furthermore, it was not until 7 months after the war began that the United States led its 
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first large-scale mine warfare exercise (Melia, 1991).  As for ship protection, the United 

States borrowed a British paravane design that was only put into operation as of May 

1917 (Melia, 1991).  Given the infancy of the U.S. mine warfare program, mine warfare 

personnel lacked experience and therefore thought mine warfare to be easy (Melia, 1991).  

Moreover, minesweeping was not a high priority and other duties began to take 

precedence: patrols, search and rescue, and anti-submarine missions (Melia, 1991).   

Meanwhile, the Germans developed delayed-rising mines that allowed for 

a minefield to remain lively even after sweeping operations had declared the area clear.  

On the Allied front, the United States developed the Mark 6 antenna mine which was 

particularly effective against German U-boats and the British developed the first 

magnetic influence mine (Melia, 1991).  In addition to mining advances, mine counter-

countermeasures became more sophisticated to include sprocket wheels on mooring 

cables to avoid cutting and explosives on mooring cables to destroy sweeping gear 

(Melia, 1991).  Mine countermeasures, however, continued to fall behind the 

technological advances of mining.  All of these factors combined created a very complex 

mine warfare problem for both the Allies and Central Powers, particularly in the North 

Sea where mines were laid by both parties. 

Despite the difficult race to mine countermeasures adequacy, little was 

done following the war to continue such efforts in the United States.  While the British 

learned a valuable lesson from their mining and mine countermeasures efforts leading to 

the opening of an active mine warfare school, development of active and reserve 

minesweeping fleets, and enhanced promotion opportunities for MCM officers, the 

United States continued to struggle.  It considered the quick American ingenuity in 

mining and mine countermeasures to be successful, particularly in the North Sea, and 

therefore much of American interest in mine warfare was lost (Melia, 1991).  In the area 

of mining, the United States used its newly developed antenna mines to form a complete 

antisubmarine barrier, known as the North Sea Mine Barrage, which sank at least three 

German U-boats, and damaged three or for more (Melia, 1991). As for mine 

countermeasures, in the post-war mine sweeping operations, the United States declared 

the sweep successful even though the minesweepers could only account for 40 percent of 
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the mines laid and declared the rest to have self-destructed; mines not swept were found 

for many years after the sweeping operations ended (Melia, 1991).  The widely accepted 

successes of the mine warfare front, combined with limited promotion opportunities of 

U.S. mine warfare officers, led to yet another stagnation of mine warfare development 

during peacetime. 

d. World War II  

Due to the continued lack of mine warfare professional interest in the 

years leading up to WWII, the United States did not capitalize on some of the 

opportunities for advanced mine warfare studies.  While there were annual Navy 

exercises conducted from 1923 to 1941, mine warfare rarely played a role in them (Melia, 

1991).  In addition, the Naval Ordnance Laboratory, an independent research agency 

funded by the Bureau of Ordnance, conducted only limited research in the mine warfare 

area, roughly 20 percent of its total mission; mine countermeasures research comprised 

the smallest portion of that 20 percent effort (Melia, 1991).  Meanwhile, the British 

continued to improve their magnetic mines, and associated countermeasures to include 

degaussing and deperming.  Germans also continued their research by improving ship 

counters on mine activation devices, developing acoustic influence mines, and creating 

magnetic-acoustic combination mines (Melia, 1991).  As tensions began to build in 

Europe, the British recalled their well-trained MCM naval reserve force to counter the 

German mine threat.  The U.S. Navy department, however, did not start restructuring its 

mine warfare program until 1939 (Melia, 1991).  

Germany employed its capabilities in mine warfare as soon as the war 

began.  In 1939, Germany mined the coast of England as it had done before the start of 

WWI.  By 1942, Germany carried its mining efforts to the coast of the United States and, 

using U-boats, laid over three hundred influence mines off of the Delaware Bay, 

Chesapeake Bay, Jacksonville, and Charleston (Melia, 1991).  Although the U.S. military 

pulled 125 fishing trawlers for the minesweeping effort and strung large steel nets across 

some harbor entrances, it simply was not enough to combat the threat (Melia, 1991).  As 

a result, some American ports were closed for over a month.  The restrictions and 
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hardships placed on the U.S. fleet at home show that continued mine warfare effort and 

vigilance is extremely necessary during peacetime and war.  Yet, once again, due to a 

lack of professional interest, many of the experienced mine warfare personnel left the 

community after the war and many of the necessary lessons and springboards for MIW 

development were lost (Melia, 1991). 

e. Iran-Iraq War 

During and leading up to the Persian Gulf War, there were three 

catastrophic mine strikes.  First, on April 14, 1988, while participating in Operation 

Earnest Will, the Samuel B. Roberts (FFG-58) struck a submerged M-08 mine.  The M-

08 mine, laid by Iranian forces, blew a 20 ft hole in the ship’s hull, broke the keel, blew 

the engines off their mounts, and caused significant flooding (Melia, 1991).  The 

$96 million dollars of damage inflicted on the USS Samuel B. Roberts was caused by a 

mine that only cost $1,500 (Khan, 2010).  Later, the USS Tripoli (LPH-10) struck a 

moored mine on February 18, 1991, and was left with a large hole in the side of her hull 

that was approximately 16 by 25ft (Melia, 1991). Lastly, the USS Princeton (CG-59) 

detonated one or more influence mines which lifted her out of the water and caused 

significant damage to her hull and propeller (Melia, 1991). Two of these three mine 

strikes occurred in waters that were believed to be clear of mines (Melia, 1991).  This 

assumption, in addition to the catastrophic damage incurred by three Navy vessels, 

caused the United States to re-evaluate its mine warfare capabilities once again.  Just 

before the Tripoli and Princeton mine strikes, the bulk of the U.S. Navy surface MCM 

force was comprised of only 20 Korean War-era MSOs (Minesweeper, Ocean) (Melia, 

1991).  Some explained the lack of adequate capability was due to a reliance on NATO 

allies for minesweeping assistance, but the Secretary of the Navy in 1991, H. Lawrence 

Garrett III, showed his awareness by stating that the Navy “spent more than 25 years not 

developing or buying new minesweepers or minehunters” (Melia, 1991). 
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C. A MODERN UNCONVENTIONAL MINE THREAT AND FORWARD-
THINKING COUNTERMEASURES 

1. The Drifting Mine Threat 

Today, the United States and the international community at large, is faced with 

an unconventional mine threat: the drifting mine.  During recent Libyan conflicts in May 

2011, three drifting mines were laid off the coast of Misrata by forces loyal to the late 

Libyan leader, Muammar Gaddafi (Reuters Africa, 2011).  These mine-laying operations 

were intended to threaten to flow of humanitarian aid into Libya, and they did 

(Zeitungzeid, 2011).  Desperately needed aid was blocked and the evacuation of 

foreigners and wounded Libyans ceased (Reuters Africa, 2011).  Italian Navy Vice 

Admiral Rinaldo Veri, Commander of the Maritime Headquarters in Naples (NATO) 

commented, “The mining of a civilian port by pro-Qadhafi forces is clearly designed to 

disrupt the lawful flow of humanitarian aid to the innocent civilian people of Libya and is 

another deliberate violation of United Nations Security Council Resolution 1973” 

(Zeitungzeid, 2011).  Facing adversaries with little or no concern for the loss of civilian 

lives is a harsh but true reality of modern-day warfare.   

Pushing even closer in time towards the present date, Iran threatened to close the 

Strait of Hormuz in December 2011 (Blair, 2012).  This threat surfaced from a senior 

member of Iran’s parliament after European Union nations set an oil embargo against 

Iran to deter its nuclear program (Blair, 2012).  The Strait of Hormuz, measuring 280km 

long and 45km wide at its narrowest point, connects the Sea of Oman to the Arabian Gulf 

(Khan, 2010).  Any successful attempt to close the strait would have international 

consequences; 17 million barrels of oil move through the waterway every day and they 

account for 35% of the world’s seaborne crude oil shipments (Blair, 2012).  While 

attempts to close the strait may or may not include the laying of mines, “many experts 

agree that closing the strait largely rests on the ability of Iranian forces to rapidly lay a 

web of naval mines in its narrow passages without early interception” (Khan, 2010).  

Therefore, it is prudent to consider the easiest of all mines, and arguably the most rapid, 

to deploy: the drifting mine (Khan, 2010).  Although closing the strait using drifting 

mines could exercise Iranian power and drastically increase the price of crude oil 
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worldwide, it is important to note that approximately 87% of Iranian imports and 90% of 

its exports travel by sea (Khan, 2010).  Therefore, it is logical to assume that economic 

interests could be the only deterring factor to Iranian mining operations (Khan, 2010).   

By examining the aforementioned examples in recent history, a disconcerting yet 

reasonable question arises: what if a nation or terrorist group is able to deploy a drifting 

mine in an area that will not harm its own interests but can deliver potentially devastating 

consequences to its adversary?  This is a question that will hopefully never be answered 

by the United States or its Allies.  However, it must be considered to stay ahead of mine 

threat tactics and avoid repeating the past. 

2. Forward-Thinking Countermeasures 

The countermeasure for drifting mines has stayed relatively the same throughout 

history.  For example, during the Persian Gulf War, intelligence reports showed that Iraqi 

forces may have intentionally deployed drifting mines to deter Coalition naval operations 

(Desert Shield/ Desert Storm, 2010).  As always, the standard procedure to counter 

drifting objects was to set shipboard mine watches and deploy helicopters to search the 

area.  This, however, is time consuming and detracts from other necessary missions 

required of operational aircraft carriers and supporting ships.  If a drifting mine, which 

can easily be deployed from a small boat, was set free in a U.S. port, it can be assumed 

that the same search and destroy procedure would apply.  
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II. OCEANOGRAPHIC DESCRIPTION OF THE CHESAPEAKE 
BAY AND HAMPTON ROADS INLET 

A. HAMPTON ROADS INLET SELECTION 

The Hampton Roads Inlet, as shown in Figure 1, is located at the mouth of the 

James River, between the northern end of the Hampton Roads Bridge Tunnel and Fort 

Wool. This area, measuring slightly less than one nautical mile across, was chosen for 

two main reasons.  First, it is located within three nautical miles of Naval Station 

Norfolk, the largest U.S. naval station in the world.  Second, Hampton Roads is the 

world’s leading bulk cargo harbor (PAWSA Report, n.d).  In fact, commercial barges 

carry approximately 150,000 to 500,000 barrels of petroleum in and around Hampton 

Roads biweekly (PAWSA Report, n.d).  Furthermore, six military tankers, each with a 

7.5 million gallon capacity, are homeported in Norfolk (PAWSA Report, n.d).   

Given that U.S. naval movements roughly equal the commercial traffic in this 

area, Hampton Roads is an appealing target for terrorist activity (PAWSA Report, n.d).  

To further this point and provide a real-life example of the shipping traffic near Norfolk, 

AIS data for the modeling period used for this study was collected and is displayed in 

Figure 2.  Due to the high traffic density and military importance, an attack, or threat of 

attack, on this area using drifting mines could have immediate impacts on economic 

stability and national security (PAWSA Report, n.d).   
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Figure1. Hampton Roads Inlet area at the mouth of the James River 

 

Figure 2. Average ship density in the southern Chesapeake Bay (Courtesy of C.W. 
Miller and  J.E. Joseph, NPS Ocean Acoustics Lab) 
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B. HAMPTON ROADS INLET FLOW DYNAMICS 

The flow dynamics in the lower part of the bay, near Norfolk, are mostly affected 

by bathymetry, wind, buoyancy and tidal forcing (Teague, 2011).   

1. Bathymetry 

 Serving as a connection between the Thimble Shoal Channel and the James River, 

the Hampton Roads Inlet ranges from approximately 5 to 30 m in depth, as shown in 

Figure 3.  This area is relatively deep when compared to the remainder of the south 

Chesapeake Bay, Figure 4, and therefore is sufficient for several ship traffic channels, 

Figure 5 and 6.  The portion of the Thimble Shoal Channel that reaches into the Hampton 

Roads Inlet is bounded to the north by the Thimble Shoal, Old Point Comfort, and the 

Hampton Bar, and to the south by Willoughby Bank, Fort Wool, and Sewells Point Spit.  

Channels in the South Chesapeake Bay, such as this one, may have large 

influences over the total flow dynamic. In particular, bathymetric variations can influence 

stratification over channels and bottom front formation (Valle-Levinson & Lwiza, 1997).  

Any increase in stratification over channels can increase the elliptical nature of the M2 

tidal constituent with depth and therefore affect the overall flow (Valle-Levinson & 

Lwiza, 1997).  In general, the bathymetry and hydrography of the lower Chesapeake Bay 

have the most notable effect on the tidal flow characteristics of the area which will be 

discussed in a later section. 
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Figure 3. Bathymetry for Hampton Roads Inlet 

    
   Figure 4. Bathymetry for South Chesapeake Bay 
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Figure 5. NOAA Nautical Chart of the Hampton Roads Inlet and surrounding area 
(From NOAA, 2008) 

 

 

Figure 6. NOAA Nautical Chart Inset of Hampton Roads Inlet    
(From NOAA, 2008) 
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2. Atmospheric Conditions 

 a. Wind  

 Prevailing seasonal winds in the Chesapeake Bay area are typically 

northeasterly and southwesterly and vary between 4 and 6 m/s, except in summer when 

wind speeds are generally slower (Levinson, Li, Royer, & Atkinson, 1998).   From late 

summer to early spring, northeasterly winds dominate until summer when they change to 

a more southwesterly direction.  Observed seasonal variation in these winds showed that 

the highest energy wind forcing was commonly seen during late fall and winter from the 

northeast or northwest.  Although strong wind forcing is generally seen during the late 

fall and winter, highly energetic winds can occur during any season and are not always 

from a northeast or northwest direction (Levinson, Li, Royer, & Atkinson, 1998). 

 Prevailing winds, combined with the orientation of the bay entrance, can 

cause large variations in current flow and subtidal sea-level within the Chesapeake Bay 

(Levinson, Li, Royer, & Atkinson, 1998).  Wind can reinforce or reverse current flow 

throughout the bay’s two-layered vertical density structure (L13).  As for sea-level 

variations, a northeasterly wind will normally lead to an increase in subtidal sea surface 

elevation at the entrance of the bay caused by a net barotropic inflow.  In contrast, a 

southwesterly wind often causes barotropic outflow which leads to a decrease in sea-

level.  The effects of wind, from the aforementioned directions, on sea-level and current 

flow in the lower bay have been observed to occur in less than 10 hours (Levinson, Li, 

Royer, & Atkinson, 1998). 

 b. River Run-off and Buoyancy 

 River run-off has a significant effect on density stratification, hence 

surface buoyancy, throughout the bay.  On average, the Chesapeake Bay intakes 2500 

m3/s of freshwater run-off each year (Levinson, Li, Royer, & Atkinson, 1998).  

Approximately 14% of the total run-off comes from the James River and flows into the 

lower Chesapeake Bay (Levinson, Li, Royer, & Atkinson, 1998).  River run-off 

maximums are typically seen in March and April whereas the minimums are during 

August and September.  Therefore, a strongly stratified, meaning vertical differences in 
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salinity of order 10, environment can be expected in April and May and a virtually 

homogeneous, meaning vertical differences of less than 2, environment in October and 

November  (Levinson, Li, Royer, & Atkinson, 1998).    

3. Tidal Variations and Current Flow 

Hampton Roads Inlet exhibits a semi-diurnal tidal flow with a mean range of 

0.740 meters and a diurnal range of 0.841 meters (NOAA Tides and Currents, n.d.).  The 

tidal variations in this region are particularly important because of their link to two 

important oceanographic features near the mouth of the James River that affect overall 

current flow.  The first feature is a frontal system that develops during early flood tide 

under normal lunar variation (Mann, 1988).  It forms mainly because of tidal current 

phase differences in the region and can usually be seen on the surface as a line of foam or 

litter (Mann, 1988).  The second feature, a cyclonic gyre in the Hampton Roads region, 

acts to strengthen the flood current during early flood tide.  It combines with the frontal 

system to partially retain downstream-flowing water in the James River estuary (Mann, 

1988).  Overall flow, in the three dimensional sense, can be affected by this retention as 

downstream-flowing water may be injected into deeper upstream-flowing water.  

Contributing to this three dimensional flow is the flooding water itself.  The more saline 

flood water from the Bay flows into the Inlet from the Hampton Flats and dives under 

fresh ebbing water from the River; the downward movement of the saline water is 

enhanced by the steep bottom features near Newport News Point.  To further explain the 

circulation in the area, non-tidal currents and the Hampton Roads frontal feature are 

shown below in Figure 7. 
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Figure 7. Current flow throughout the James River (From Mann, 1988) 

As can be expected, tidal variations will play a large role in the modeling of 

drifters in this area due to its inner bay location and small scale. 
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III. MINE DRIFT MODELING 

A. DELFT3D CIRCULATION MODEL 

Delft3D, developed by a Dutch institute entitled Deltares, is an integrated 

computer software program that can provide multi-dimensional simulations of current 

flows, sediment transports, waves, water quality, and ecology for coastal, river, and 

estuarine environments (Deltares, 2011).  While the Delft3D package has several 

modules, the primary module used for current simulations is Delft3D-FLOW (Deltares, 

2011).  Delft3D flow layers tidal and meteorological forcing on a rectangular or 

curvilinear grid to calculate non-steady flow and transport phenomena (Deltares, 2011).  

Delft3D applications include, but are not limited to, the aforementioned tide and wind-

driven flow simulations, density driven flows, river flow simulations, fresh-water river 

discharge into bays, thermal stratification, and wave-driven currents (Deltares, 2011).   

The Delft3D model applications were used by the Naval Oceanographic Office in 

Stennis Space Center, MS. to create a relatively small scale, approximately 60 meters 

resolution, Chesapeake Bay flow simulation (M. Toner, personal communication, April 

18, 2012).    This flow simulation, known as the Chesapeake Bay Delft3D model, is one 

of several high resolution oceanographic simulations developed for the purposes of 

homeland defense.  Acting as a nested model, its flow is forced at the open boundaries by 

temperature, salinity, water level, and velocities provided by the USEAST Regional 

NCOM model (Teague, 2011; M. Toner, personal communication, April 17, 2012).  The 

local wind stress input, provided by 15 km COAMPS, forces flow at the free surface 

(Teague, 2011; M. Toner, personal communication, April 18, 2012).  Computation of 

flow within the model is accomplished through solving unsteady shallow water equations 

in three dimensions (Teague, 2011).  The flow computation produces both depth 

averaged currents and horizontal velocity vectors for several depth layers.  For the 

purposes of this study, only the horizontal velocity vectors, U and V, at the surface were 

used to develop drift simulations. 
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The evaluation and validation of the Delft3D current model for the Chesapeake 

Bay was conducted in 2011 by the Naval Research Laboratory (Teague, 2011).  Real-

time current observations for the purposes of model comparisons were taken from 

NOAA’s Tides and Currents website for July 28 to August 30, 2011 (Teague, 2011).  

Five stations near Norfolk, each with operational acoustic current Doppler profilers 

(ADCPs), were used to evaluate the model: Cape Henry, York Spit Channel, Thimble 

Shoal, Naval Station, and Newport News Channel (Teague, 2011). The evaluation 

concluded that the Chesapeake Delft3D model is tidally driven (Teague, 2011).    

Although the comparison showed significant differences in mean model currents and 

mean observed currents, the tidally driven model should still be able to “provide a 

reasonable depiction of current fluctuations” (Teague, 2011).  Furthermore, Michael 

Toner, from the Naval Oceanographic Office, stated that “if an operational situation arose 

that required drift predictions in the Chesapeake, we would definitely use the DELFT3D 

model because it is the most accurate we have; the 80% solution on time is much more 

useful than the 99% solution delivered late or not at all” (M. Toner, personal 

communication, April 18, 2012).  Therefore, it is assumed that the high resolution 

Chesapeake Delft3D model is adequate to provide input for drift model calculations 

formulated during this research. 

Chesapeake Delft3D covers a large portion of the Chesapeake Bay; a smaller 

region was specified to extract data for the Norfolk area (see Figure 8). 

 

Figure 8. Subsection of Chesapeake Delft3D for the purposes  
of drift model research 
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Delft3D data, including depth, longitude, latitude, and 4-dimensional U and V 

current vectors, was extracted and imported into a netcdf file for the red region shown 

above.  As previously mentioned, the U and V vectors from this data were used to force 

the drifter simulations.  For the explanation of drifter formulation, U and V will be used 

to represent the Delft3D current velocity components and u and v will be used to 

represent drifter velocity components. 

B. DRIFT FORMULATION 

1. Curvilinear Grid Conversion   

The grid used for the Delft3D model is a curvilinear grid that uses latitude and 

longitude to identify position.  To simplify grid locations and follow-on calculations, the 

grid was converted from latitude and longitude to distance in meters.  The center of the 

red area above was identified as the origin of the drifter grid,  , )d dx y = 0, and all other 

locations within the grid were converted accordingly. 

2. Starting Drifter Positions and Times   

To simulate a realistic scenario of drifters intended for the Hampton Roads Inlet, 

all of the drifters used for this research started with a randomly selected position within a 

2 nautical mile by 1.6 nautical mile box located 0.75 nautical miles east of Fort Wool.  

The start positions within the box were randomly selected using both uniform and normal 

distribution formulas.  Uniform and normal random positions were generated using the 

MATLAB function rand(n) and randn(n), respectively, which give n x n matrices of 

pseudorandom values taken from a standard uniform, or normal, distribution on the open 

interval (0,1).    

The start time used for each drifter trajectory coincides with the beginning of 

flood time for each day (see Table 1).  Using a total of 12 days of Chesapeake DELFT3D 

data, July 28, 2011 to August 9, 2011, the period of flood for each day lasted 

approximately three hours and acted to drive the most of the simulated drifters through  
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the length of the inlet.  For each day, 10,000 drifters were randomly placed in the start 

box, according to uniform or normal distribution as described above, and permitted to run 

for three hours. 

Table 1.   Flood times according to Chesapeake Delft3D Model 

Day (2011) Flood Time Period 

7/28 10Z – 13Z 

7/29 10Z – 13Z 

7/30 11Z – 14Z 

8/01 12Z – 15Z 

8/02 13Z – 16Z 

8/03 14Z – 17Z 

8/04 14Z – 17Z 

8/05 15Z – 18Z 

8/06 16Z – 19Z 

8/07 17Z – 20Z 

8/08 18Z – 21Z 

8/09 19Z – 22Z 
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3. Drifter Movement  

The drifters move via a step by step process that uses position, time, and 

corresponding U, V data to update each position.   

To calculate the second point location in the drifter simulation,  1 1, )n nx y  , 
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 The time interpolation for  1 1, )n nu v   was a simple linear interpolation of Delft3D 

time layers.  Spatial interpolation of Delft3D (U, V) for  1 1, )n nu v   was accomplished by 

the following method: 

 Minimum distance calculation from Delft3D grid point to the drifter location (see 

Figure 9) 

 2 2 2( ) ( )d ddist x x y y     (4) 
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Figure 9. An example drifter location with respect to Delft3D grid point 

 

To determine which box, A, B, C, or D above, the drifter was located (see Figure 

10 and 11) 

  

 1 2 3 4 2         (5) 



 27

 

Figure 10. Diagram to show that if the drifter was located in the box, the sum of the 
angles is 2π 

 1 2 3 4 0        (6) 

 

Figure 11. Diagram to show that if the drifter was located outside of the box, the sum 
of the angles is 0 
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 Several box locations calculations were completed until the correct box location 

was found.  Having found the correct box, multiple dimension linear interpolation was 

used the find the drifter location, point 1 1( , )n nf x y    (see Figure 12).  This process was 

repeated for the duration of the specified drift time or until the drifter collided with a 

boundary. 

 

34 23 34 41
1 1 1 2

12 34 23 41 12 34 23 41

( , ) ( )( ) ( )( )...n n

S S S S
f x y F F

S S S S S S S S   
     (7) 

 

 

Figure 12. Weighted areas to calculate drifter location 
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IV. STATIONARY SENSOR GRID AND PROBABILITY OF 
DETECTION  

A. SENSOR GRID FOR MOVING TARGET DETECTION SIMULATION 

To simulate detection of drifters generated by the high-resolution current model, a 

hypothetical and ideal sensor grid was formulated. Each of the “sensors” in the sensor 

grid was modeled as an upward looking sonar system that has a circular detection 

footprint on the surface with a radius, Rd, of 100 meters.  Forty-nine of these sensors 

were placed in a seven by seven grid to cover almost 100% of the Hampton Roads Inlet.  

The grid, each sensor with a specific index number, was placed just to the west of the 

drifter start box, as shown in Figure 13.   

 

 

Figure 13. Sensor grid with associated index numbers and drifter start box 
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B. PROBABILITY OF DETECTION 

1. Detection of Drifters   

Each sensor was set to detect drifters that remained within its circular detection 

footprint for a period of five seconds or more during the three hour flood period of each 

day.  At the conclusion of the flood period, the sensor with the most detection calls, or 

highest drifter density, was considered the “lead sensor” and the drifters that it called 

could not be considered detections by the remaining sensors.  The sensor with the second 

highest number of detections, not including those called by the lead sensor, was marked 

as the “second place sensor.”  The sensor in third place had the highest number of 

detections, not including those called by the first and second sensors, and so on.  In other 

words, the “lead sensor” is the only detector that is completely independent of the others.  

This ranking process continued until all of the drifters that ran through the grid were 

counted.  Some of the drifters were directed away from or did not move fast enough to 

traverse the sensor grid and therefore were not included in the total count for each day.  

This process formed a sensor hierarchy which ranked each of the sensors with more than 

zero drifter detections for each day. 

2. Probability of Detection   

The probability of detection for each of the 49 sensors, referred to as sensor 

detection probability, was simply the number of drifters that each sensor called, not 

previously called by other sensors as described above, divided by 10000.  Some of the 

49 sensors were assigned a probability of zero because the drifters did not cross their 

surface footprints or all of the drifters they detected were previously called by other 

sensors.  

Assuming that a detection scenario would allow more than one sensor to be used, 

a combined probability of detection can be calculated by adding sequential sensor 

detection probabilities in the hierarchy.  For example, if three sensors are to be used, the 

sensor detection probabilities for the third, second, and first place sensors in the hierarchy  
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were summed together to form the combined probability of detection for three sensors.  

The total probability of detection, for a given day, is the combined probability associated 

with the number of sensors necessary for detection of the total drifter count.  The total 

probability of detection from day to day could have large variations due to current speed 

and direction.  
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V. OPTIMAL DEPLOYMENT OF STATIONARY SENSORS 

A. IMPORTANCE OF UTILIZING DRIFT MODELS TO OPTIMIZE 
SENSOR NETWORKS 

In past studies, networks of passive sensors have been discussed as potential tools 

for large area detection coverage while being moderately inexpensive (Wettergren, 

Performance of Search via Track-Before-Detect for Distribute Sensor Networks, 2008).  

Due to these features and many others, optimizing sensor networks for underwater port 

surveillance has been a long-standing and important area of study (Penny, 1999).   

Methods of optimizing sensor networks are usually discussed from two different 

perspectives:  the point coverage approach and the target path coverage approach.  

Seeking to find ways to detect stationary objects within a surveillance region is known as 

point coverage; target path coverage seeks solutions to detect targets as they move across 

areas of surveillance (Wettergren & Costa, Optimal Placement of Distributed Sensors 

Against Moving Targets, 2009).  Both of these methods have been used to specifically 

address sensor network optimization. 

This study is related to target path coverage and is designed as an addition to 

previous work.  It aims to use knowledge of the environment to specifically address some 

of the issues and conclusions stated in previous studies of moving target detection.  There 

are several areas of sensor network research that could benefit from environmental 

knowledge, however, only a few are addressed in this study.  First, in Wettergren (2009) 

it states “the increase in (sensor network) performance becomes more significant as prior 

knowledge of target dynamics increases” (Wettergren & Costa, Optimal Placement of 

Distributed Sensors Against Moving Targets, 2009).  Secondly, also in Wettergren 

(2009), it states one of the hardships associated with undersea sensor systems is that “cost 

and deployment limitations lead to necessarily sparse coverage fields” (Wettergren & 

Costa, Optimal Placement of Distributed Sensors Against Moving Targets, 2009).  

Lastly, in Wettergren (2008), it concludes the following: “To minimize false search for a 

fixed search performance, it was shown that a smaller number of larger range sensors is 

desirable” (Wettergren, Performance of Search via Track-Before-Detect for Distribute 



 34

Sensor Networks, 2008).  These statements highlight three specific needs to further 

sensor network research: high-resolution estimations of target movement, optimal sensor 

numbers, and optimal sensor locations.  The goal of this research is to provide guidance 

for all three of these needs while also giving insight into how often sensor locations 

should be updated.  The key to providing such guidance, in the example that will be 

presented, is a high-resolution drift model. 

B. SENSOR ALLOCATIONS RESULTING FROM DRIFT MODEL INPUTS 

1. Optimal Sensor Locations   

For the 12-day Hampton Roads example used in this research, the drift model 

outputs serve as high-resolution estimations of target movement.  The drift estimations 

were used in a greedy optimization process, as described in Chapter IV, to recommend 

sensor locations.  The optimal sensor locations, associated with both uniform and normal 

Monte Carlo simulations, are presented in Appendix A, B, and C.  Appendix A shows the 

numerical results of the greedy optimization process for each day using bar graphs.  

Appendix B shows sensor ranking results by displaying the appropriate ranking number 

inside of the sensor locations used to accomplish a total drifter count for that day.  

Appendix C is a detailed table of the graphic results shown in Appendix A and B.  As can 

be observed, optimal sensor locations varied according to daily drifter tracks and the type 

of Monte Carlo simulation used for each flood period.  Due to these variations, each 

flood period required a different number of sensors to achieve total probability, as shown 

in Appendix B and C.  Therefore, it became important to optimize both sensor location 

and sensor number. 

2. Optimal Number of Sensors 

 Each flood period was examined to find how many sensors were necessary to 

achieve a 90%, 95%, or 99% of the total probability.  As shown in Table 2, this varied 

depending on the Monte Carlo distribution and the day.  Therefore, the mean number of 

sensors for each percentage of the total probability was calculated and recorded.  To offer 

the highest level of detection, the mean number of sensors associated with the highest 

percentage, 99%, will be the focus for the rest of this chapter.  The lines representing the 
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99% cutoff are plotted in Figures 14 and 15.  This line is plotted to show that adding 

more sensors than the mean number does not contribute significantly to the total 

probabilities for any of the days.  Therefore, the optimal number of sensors, for this 

location and period of time, is 10 for a uniform distribution of drifters and 8 for a normal 

distribution of drifters.  It is important to note that these numbers will change given a 

change in location or time period.  

Table 2.   Number of sensors required to achieve 90%, 95%, and 99% of the total 
probability 
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Figure 14. Total probability reached with a given number of sensors for each of the 
12 days.  The red line shows the number of sensors necessary to reach 99% of the total 

probability for the uniform Monte Carlo simulation 
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Figure 15. Total probability reached with a given number of sensors for each of the 
12 days.  The red line shows the number of sensors necessary to reach 99% of the total 

probability for the normal Monte Carlo simulation  

3. Time Sensitivity of Sensor Locations 

 The time sensitivity of sensor locations is defined as how often a sensor position 

needs to be updated based on the latest model run.  For this case study, it was found that 

when using the optimum number of sensors for 99% of the total probability, updating 

sensor positions based on the daily model run does not significantly increase detection 

probability.  As shown in Figures 16 and 17, using a red line, advancing the drift model 

one day while maintaining the optimal sensor positions of the previous day yields a 

minimal change in detection probability.  To further test time sensitivity, the optimal 

sensor positions from 2 to 6 days prior were also tested using the model run from the 

current day.  This showed that even when using the optimal sensor positions from 6 days 

prior, in both the uniform and normal case, the maximum variation in detection 

probability was only on the order of 5%.  Therefore, although updating sensor positions 

based on the current model run for each day leads to the highest detection probability, the 

benefit is minimal. 
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Figure 16. Time sensitivity for 99% of total detection probability of uniformly 
distributed drifter start positions 
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Figure 17.  Time sensitivity for 99% of total detection probability of normally 
distributed drifter start positions 

 It should be noted, however, that using a number of sensors that was less than the 

optimum number for this case study significantly affected the time sensitivity associated 

with the normal and uniform model runs.  If using a fewer number of sensors than the 

optimum number, maintaining sensor positions for more than a couple of days could 

significantly decrease detection probability, particularly for the uniform case.  However, 

as the number of sensors increased towards the optimum number, the time sensitivity 

decreased, as shown in Figures 18 and 19.  This reinforces the importance of determining 

and employing the optimum number of sensors based on current flow model predictions. 
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Figure 18. Time sensitivity for a varying number of sensors—uniform case. 
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Figure 19. Time sensitivity for a varying number of sensors—normal case 

C. SENSOR ALLOCATIONS WITHOUT USING DRIFT MODEL INPUTS 

 Some may argue that placing sensors according to drift model outputs is 

unnecessary and using sensors in a line formation across an inlet is just as efficient.  

There are several problems with choosing to use a line of sensors in this fashion.  First, a 

line of sensors does not allow for flexibility in the number of sensors to be used.   

Secondly, some of the sensors in the line may be extraneous depending on the flow 

pattern for a particular time period.  Lastly, selecting the location of such a line could 

dramatically affect the combined probability of detection and without environmental 

predictions the selection would be an educated guess at best.  Therefore, to investigate the 

added benefit of employing the sensor optimization methodology previously described, 

combined probabilities resulting from the optimization process and a line of sensors were 

contrasted. 

 Using the grid as show in Figure 13, a sensor line was considered a north-south 

column of sensors numbered 1 through 7, west to east.  The combined probability for 

each column was calculated as described in Chapter IV and was contrasted to the 

combined probability of the top seven sensors found using the optimization process for 

each day.  The daily comparison results are shown individually in Appendix D.  As seen 

in Figures 20 and 21, the differences in combined probabilities range from approximately 
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-1 to 19% for a uniform distribution and 0 to 27% for a normal distribution of drifters.  

This shows that, for this case study, depending on the day and the column of sensors 

chosen to create the detection line, the added benefit of using the sensor placement 

optimization process can be quite substantial. 

 It should be noted that some of the sensor lines yielded slightly higher combined 

probabilities than those of the optimized sensor formations for a particular day.  These 

differences, however, were on the order of 1%.  Furthermore, this was only true for the 

uniform case for three of the columns on August 8th and two of the columns on August 

6th and 7th.  This reinforces that column selection, for this case study, is paramount if 

attempting to achieve a higher detection probability than that reached using the sensor 

optimization process.  

 

Figure 20. Combined probability differences found when contrasting optimized 
sensor results and sensor line results for the uniform case.  Positive values indicate the 

value added by using drifter models to optimize sensor locations. 
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Figure 21. Combined probability differences found when contrasting optimized 
sensor results and sensor line results for the normal case.  Positive values indicate the 

value added by using drifter models to optimize sensor locations. 
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VI. CONCLUSIONS AND FURTHER RESEARCH 

A. CONCLUSIONS 

This research was intended to build upon previous sensor network studies that 

called for better target movement estimations.  By marrying tactical oceanographic 

models with an optimized network, it was possible to provide improved target movement 

estimations and thereby build an environmentally realistic plan for detecting a floating 

target.  The plan presented was an optimization process that used a current drift model to 

recommend the number of sensors needed to achieve an estimated level of detection and 

optimal locations for their use.  Also incorporated in the plan was a time sensitivity study 

to show the effect of persisting sensor locations on detection probability.  Lastly, to 

challenge the optimization plan presented, an alternative sensor arrangement, a line of 

sensors, was used to generate detection probabilities.  Contrasting the two results showed 

how the optimization plan can offer higher detection probabilities than a line of sensors 

stretched across the width of an inlet or harbor.  Thus this research was able to show the 

usefulness of and methodology for using ocean current models to optimize sensor 

networks. 

It should be noted, however, that the optimization results are highly dependent on 

the target distribution chosen for each model run.  Without prior intelligence of enemy 

tactics or field research, conclusions of the appropriate distribution for target simulations 

are circumstantial.  While the uniform runs may be more applicable to a scenario 

involving a line of deployed drifting mines, normal runs may be more appropriate for an 

attack of simultaneous mine deployments from the same position.  Therefore, both 

normal and uniform results are presented for completeness and future flexibility. 

B. FURTHER RESEARCH 

To further the research presented in this paper, large timescale studies should be 

conducted in order to determine monthly or seasonal positions for stationary sensors.  

While this study only focused on twelve days of data, the methodology can still apply to 

large timescales, provided there is archived model data for the larger timeframe to be 
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studied.  Applying the methodology in this way could show that the cost of frequently 

moving sensors according to updated model data outweighs the benefit of doing so.  Thus 

furthering the timescale of the methodology presented has the potential to offer optimized 

guidance for nearly continuous surveillance of U.S. inlets and ports. 

Applying the optimization methodology to actual underwater sensors is another 

way to further the research presented.  At the 3rd International Conference on Waterside 

Security in Singapore from May 28 to May 30 2012, several underwater systems were 

presented that could be used in future studies of this methodology.  One of those systems 

is known as “Starfish,” see Figure 22. Developed by Defence Research and Development 

Canada—Atlantic, Starfish, and the more recent model, “Starfish Cube” shown in Figure 

23, are multi-influence sensor platforms used for underwater surveillance of littoral 

waters, choke points, and inlets.  Starfish Cube contains internal processing for the 

detection and tracking of surface and subsurface targets. Its ARM processor is capable of 

performing real-time signal processing of sensor data which can be sent to a network of 

underwater modems and surface gateway buoys for remote satellite communications.  It 

is designed for shallow water, typically less than 200 meters depth, and can run 

autonomously for more than two weeks of continuous use (Lucas, Heard, & Pelavas, 

2012).  If extended operation is needed, additional battery vessels can be linked to the 

Starfish Cube to further the operation time beyond two weeks.  These features make the 

Starfish Cube an ideal device for harbor entrance monitoring.  Therefore, in a future 

study, the optimization process presented in this research should be tested in a real-world 

setting by incorporating it into the deployment plans for a Starfish Cube network and 

evaluating its usefulness (Lucas, Heard, & Pelavas, 2012).  
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Figure 22. First generation of the Starfish sensor pods  
(From Lucas, Heard, & Pelavas, 2012) 

 
 

 
 

Figure 23. Second generation of the DRDC Starfish known as the Starfish Cube 
(From Lucas, Heard, & Pelavas, 2012) 
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As a second option for field evaluation of the methodology presented in this paper 

it may be possible to use passive acoustic diver detection devices.  Also presented at the 

3rd International Conference on Waterside Security, passive acoustic diver detection 

devices can be used to track surface and subsurface contacts.  Tested by the Netherlands 

Organization for Applied Scientific Research (TNO) and the Stevens Institute of 

Technology, the diver detection system, comprised of four hydrophones as shown in 

Figure 24, uses cross-correlation of acoustic signals to determine a target’s Direction of 

Arrival (DOA).  DOA triangulation is then used to detect and track targets.  Given that a 

system can only have a certain number of sensors and may only be useful in certain 

locations, the usefulness of the methodology presented in this paper could also be tested 

when planning to use acoustic diver detection devices (Sutin et al., 2012). 

 

 

Figure 24. SMID Technology (Italy) hydrophones used for diver detection system 
(From Sutin et al., 2012) 
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Uniform Distribution 
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Normal Distribution 
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APPENDIX B 

Uniform Distribution 
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Normal Distribution 
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